Hurricane Maria: Response Challenges

AWRA – NCRS Meeting
17 January 2018

Gordon Strassberg
NWS Liaison
FEMA National IMAT East 2

gordon.strassberg@noaa.gov

GOES 16 (Now GOES East) Satellite image of Hurricane Maria at landfall on 20 September 2017
HURRICANE MARIA: RESPONSE CHALLENGES

Agenda

- Brief Storm Overview
- Team Deployment
- Post-Storm Communications
- Response Challenges
- Doppler Radar Outages

NHC Forecast Track for Hurricane Maria, issued 5 PM AST
16 September 2017
Hurricane Maria: Response Challenges

Brief Storm Overview

• Made landfall near Yabucoa, PR 20 September 2017 at 6:15 AM AST
• Maximum Sustained Winds 155 mph at landfall (Category 4)
 • Peak Intensity 175 mph Sustained Winds (Category 5) the evening prior to landfall
• Hurricane-Force Winds and catastrophic flash flooding experienced island-wide
• Most significant storm surge flooding reported along the southeastern coast
Brief Storm Overview

Estimated Storm Total Rainfall (left) and Maximum Measured Wind Gust (right). Images Courtesy NWS San Juan

*Note: Most rain gauges and wind sensors failed during the storm. Actual values may be higher.
HURRICANE MARIA: RESPONSE CHALLENGES

Team Deployment

17 Sept.
- Notified 17 September 2017 4 pm EDT of deployment from Florida (Hurricane Irma Response) to Puerto Rico

18 Sept.
- Flew to Puerto Rico; arrived around 3 pm AST

19-21 Sept.
- Reported to FEMA’s Distribution Center (DC) Caribbean to work.
- Sheltered-in-Place through 21 September.
Hurricane Maria: Response Challenges

Team Deployment

FEMA’s Distribution Center (DC) Caribbean

Air Mattress in Supply Warehouse
Post-Storm Communications

- Maintained limited internet and cell phone capabilities through around 3 pm on 20 September
 - Cell phone tower ran out of fuel in backup generator
 - Limited number of satellite phones
 - 3 days of sporadic to no connectivity depending on exact location

Parked car moved by wind
Post-Storm Communications

Using a laptop connected to a BGAN. Photo: Diane Dooley, FEMA
Response Challenges

• Establishing reliable communications
• Obtaining situational awareness
• Flash flooding and landslides
• Guajataca Dam
• Radar Outage
Establishing reliable communications

- 100% power loss on the island
- Cell phone towers ran out of backup fuel; some generators taken
- Satellite phones necessary in the field
- Needed in order to obtain situational awareness and determine exact needs (i.e., fuel, water, food, USAR, etc.)
- Significant challenge to prepare and produce weather briefings
Hurricane Maria: Response Challenges

Obtaining Situational Awareness

- Communications and power outages made obtaining reliable information nearly impossible for several days to 1 week; often information was conflicting.
- No visibility on the ground across the mountains, thus no information.
 - Many small mountain towns completely isolated due to washed out bridges and roads.
- Difficult to assess specific needs across the island.
Flash Flooding and Landslides

• Heavy rainfall led to significant flash flooding events and landslides for 3 weeks post-storm
• Mountainous areas most frequently impacted
• Additional bridges and roads washed out, further limiting access and supply missions
 • Some roads and bridges that had been repaired were knocked out again
 • Emergency rescues of people on roofs conducted on several days
• Significant impacts on air operations
 • Largest air-supply mission in FEMA’s history
Flash Flooding and Landslides

Concentration of Landslides during Hurricane Maria
(Map courtesy of USGS)

Shaded Digital Elevation Map
(Map courtesy of ESRI)
Hurricane Maria: Response Challenges

Guajataca Dam

- Dam was overtopped/cracked due to heavy rainfall from the hurricane
 - Volume of water flowing over the dam caused significant erosion of the emergency spillway
 - Significant amount of pressure on the dam
 - Limited to no means to expedite water release to lower the lake level for several weeks due to lack of power/equipment
- Initial estimates and media reports of 70,000 people endangered if dam failed
 - Numerous evacuations in the threatened area for several weeks
 - Subsequent modelling efforts determined that only ~150 structures threatened
Guajataca Dam

- Dam stabilization: daily task force meetings to plan/coordinate efforts
 - PREPA, DoD, USACE, FEMA, NWS, Private contractors/consultants
- PREPA: owners/operators of the dam
- DoD: provided personnel (i.e., pilots), trucks, helicopters; facilitated planning
- USACE: dam inspections, remediation recommendations
- FEMA: monetary, logistics and planning support
- NWS: daily weather briefings and real-time notifications of nearby lightning for safety considerations; issuance of Flash Flood Warnings
Doppler Radar Outages

- FAA’s Terminal Doppler Weather Radar (TDWR) lost communications
- TJUA WSR-88D dome and antenna were completely destroyed by winds
 - Radar remains out of service with no estimate of return
- NWS meteorologists relied on GOES-16 (now GOES-East) satellite imagery as well as lightning networks and EM reports to assess flash flooding
Doppler Radar Outages

- U.S. Marine Corps deployed 2 portable radar units to Puerto Rico to help overcome the radar outages
 - Radar sites established in Rosy Roads and Aguadilla
 - Extensive coordination effort between NWS, FEMA and DoD
 - DoD will leave radars in place and turn over to NWS control in February until the main Doppler Radar can be rebuilt
Doppler Radar Outages

Other Response Challenges

- Logistical challenges/delays in supply arrival from Mainland
 - For example, power poles have to manufactured and shipped to the island
- Safety and security immediately following storm
- Generator installation
- Fuel distribution
Questions/Comments?

gordon.strassberg@noaa.gov